On a regularization technique for Kovarik-like approximate orthogonalization algorithms

نویسندگان

  • Aurelian Nicola
  • Constantin Popa
  • Ulrich Rüde
چکیده

In this paper we consider four versions of Kovarik’s iterative orthogonalization algorithm, for approximating the minimal norm solution of symmetric least squares problems. Although the theoretical convergence rate of these algorithms is at least linear, in practical applications we observed that a too large number of iterations can dramatically deteriorate the already obtained approximation. In this respect we analyze the above mentioned Kovarik-like methods according to the modifications they make on the ”machine zero” eigenvalues of the problem’s (symmetric) matrix. We establish a theoretical almost optimal formula for the number of iterations necessary to obtain an enough accurate approximation, as well as to avoid the above mentioned troubles. Experiments on collocation discretization of a Fredholm first kind integral equation illustrate the efficiency of our considerations. 2000 MS Classification: 65F10, 65F20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Modified Kovarik Algorithm for Symmetric Matrices

In some of his scientific papers and university courses, professor Silviu Sburlan has studied integral equations (see the list of references). Beside the theoretical qualitative analysis concerning the existence, uniqueness and other properties of the solution, he was also interested in its numerical approximation. In the case of first kind integral equations with smooth kernel (e.g. continuous...

متن کامل

On Orthogonalization Approach to Construct a Multiple Input Transfer Function Model

In this article, a special type of orthogonalization is obtained to construct a multiple input transfer function model. By using this technique, construction of a transfer function model is divided to sequential construction of transfer function models with less input time series. Furthermore, based on real and simulated time series we provide an instruction to adequately perform the stages of ...

متن کامل

Robust nonlinear model identification methods using forward regression

In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria tha...

متن کامل

A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel ‎Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...

متن کامل

A new reproducing kernel method for solving Volterra integro-dierential equations

This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009